Адель Романенкова
|13
Ученые построили прототипы биореакторов, способных одновременно вырабатывать на Луне кислород и еду. Правда, такая пища довольно непривычная, зато питательная — в этом качестве, по планам, должны будут выступить микроскопические водоросли, которые обитают в озерах и прудах по всему миру.
Новая американская лунная программа «Артемида» предполагает, что первая после «Аполлонов» высадка людей состоится в 2027 году, а уже в следующем десятилетии можно будет переходить на долгосрочное пребывание астронавтов на Луне: они смогут проводить на будущей постоянной базе долгие месяцы — примерно как сейчас на Международной космической станции.
Эта масштабная задача неизбежно приводит к размышлениям о том, что в среднем каждые два-три месяца к МКС прибывает грузовой корабль с провизией, кислородными баллонами и всеми прочими необходимыми для жизнеобеспечения ресурсами. Аналогичная организация снабжения лунной базы будет обходиться космическим державам на порядки дороже. К тому же всегда есть риск неудачной посадки корабля и потери груза.
Поэтому космические инженеры по всему миру пытаются сделать возможной хотя бы частичную самостоятельность будущих лунных экипажей в смысле жизнеобеспечения. Один из способов решения этой проблемы недавно описали специалисты из Мюнхенского технического университета (Германия) в статье для издания Acta Astronautica. Они предложили построить на Луне биореактор, который одновременно будет производить кислород и пищу. В качестве источника и того, и другого рассматривают хлореллу обыкновенную (Chlorella vulgaris) — повсеместно распространенную в пресных водоемах микроскопическую водоросль.
Она вызывает научный интерес сразу по нескольким причинам. К примеру, известна своей способностью удалять тяжелые металлы и другие загрязняющие вещества, поэтому используется для очистки сточных вод. Но несколько десятилетий назад выяснилось, что около половины всего ее сухого веса составляет белок. С тех пор в Chlorella vulgaris видят еще и как потенциальный источник пищи.
В порядке эксперимента эти водоросли разместили в прототипах лунных биореакторов двух разных конструкций. В одном заполненная ими вода находится в вертикальных стеклянных трубках, в другом — внутри плоского прямоугольного резервуара. В обоих случаях снизу подается углекислый газ. Освещение используется и солнечное, и искусственное светодиодное.
Как рассказали ученые, плоский «аквариум» оказался в несколько раз более эффективным — в нем рост водорослей ускоряется за счет вихревых потоков воды и более удачного освещения. В целом сам принцип успешно показал работоспособность в обоих случаях.
Однако перед разработчиками встал гораздо более серьезный вопрос: как на практике реализовать это на Луне? Прототипы производят в лучшем случае несколько граммов биомассы в день, а для питания каждого астронавта хотя бы в дополнение к другим продуктам нужно будет как минимум по 200 граммов. Для производства в таких масштабах понадобится «аквариум» объемом сотни или даже тысячи литров.
Вода в этом смысле еще не самая сложная проблема: в лунных полярных регионах хранятся немалые запасы водяного льда. Гораздо труднее — создание самой конструкции. Доставку с Земли подобного биореактора считают нереалистичной даже в разобранном виде.
Таким образом, единственный выход — построить его на Луне из местных ресурсов. Это означает в том числе налаживание процесса выплавки стекла из реголита и извлечение из него металлов, то есть, по сути, организацию промышленного производства на естественном спутнике нашей планеты.
Космонавтика
Японский лунный аппарат SLIM неожиданно вышел на связь из перевернутого положения 29.01.2024
Медицина
Алкоголь на ночь изменил структуру сна 29.01.2024
Биология
Ученые впервые увидели попытку шмелей вылечить свои раны 29.01.2024