Evgenia Vavilova
|36
Международная группа ученых представила доказательства существования нового антигиперядра, самого тяжелого из найденных. Изучение антигиперядер и их свойств приближает физиков к объяснению асимметрии материи и антиматерии во Вселенной.
Столкновения тяжелых ионов в Большом адронном коллайдере (БАК) создают кварк-глюонную плазму — плотное и очень горячее состояние матери. В 2015 году на БАК создали кварк-глюонную плазму температурой 10 триллионов градусов Цельсия. Ученые считают, что именно такое вещество заполняло Вселенную спустя миллионную долю секунды после Большого взрыва.
Столкновения частиц в БАК также создают условия для образования атомных ядер, экзотических гиперядер и их антиматериальных аналогов — анти-ядер и анти-гиперядер. Гиперядра состоят не только из нейтронов и протонов, там есть еще одна элементарная частица — гиперон.
Изучение таких форм материи имеет большое значение для физики. Исследуя экстремальные условия, ученые точнее понимают процессы формирования адронов из кварков и глюонов в плазме, а также асимметрии материи и антиматерии, наблюдаемой во Вселенной сегодня.
В результате столкновений тяжелых ионов до недавнего времени наблюдались лишь самые легкие гиперядерные ядра, гипертритон и гиперводород. Античастицу гипертритона обнаружили в 2010 году, а антигиперводород-4 — только в 2024-м. Антигиперводород-4 состоит из антипротона, двух антинейтронов и анти-лямбда-гиперона.
Теперь ученые представили доказательства существования антигипергелия-4. Данные собрали на эксперименте ALICE (A Large Ion Collider Experiment, детектор столкновений тяжелых ионов), одном из восьми основных детекторов БАК. Экзотическое ядро состоит из двух антипротонов, антинейтрона и анти-лямбда-гиперона.
Результат имеет статистическую значимость 3,5 стандартных отклонений, а это значит, что ученые уверены в существовании антигипергелия-4. Это экзотическое ядро становится самым тяжелым антиматериальным гиперядерным ядром, которое экспериментально нашли на БАК. Результаты эксперимента описаны в статье, опубликованной на сервере препринтов arXiv.
Измерения ALICE собраны при столкновении свинцовых ядер в 2018 году при энергии 5,02 тераэлектронвольта на сталкивающуюся пару частиц. Исследователи искали сигналы гиперводорода-4, гипергелия-4 и их антиматериальных партнеров в огромном количестве данных с помощью специально разработанного алгоритма машинного обучения.
Частиц — кандидатов на роль антигиперводорода-4 идентифицировали по распаду на ядро антигелия-4 и заряженный пион, тогда как кандидаты на антигипергелий-4 — по распаду на ядро антигелия-3, антипротон и заряженный пион.
Помимо обнаружения экзотических ядер, команда ALICE измерила количество и массы обоих гиперядер. Массы согласуются с остальными экспериментами физиков по всему миру. Полученные результаты сопоставили с расчетами статистической модели адронизации, которая хорошо описывает процесс образования адронов и ядер в столкновениях тяжелых ионов, и модель хорошо согласуется с экспериментальными данными. Размер гиперядер — около двух фемтометров (2⋅10⁻¹⁵ метров).
Соотношение античастиц к частицам для обоих гиперядер — 1:1. Это подтверждает равное образование материи и антиматерии при энергиях эксперимента в БАК. Физика высоких энергий пока не может объяснить дисбаланс материи и антиматерии во Вселенной, но каждый эксперимент приближает ученых к объяснению асимметрии материи.
Космонавтика
Японский лунный аппарат SLIM неожиданно вышел на связь из перевернутого положения 29.01.2024
Медицина
Алкоголь на ночь изменил структуру сна 29.01.2024
Биология
Ученые впервые увидели попытку шмелей вылечить свои раны 29.01.2024