Evgenia Vavilova
|45
Во время изучения свойств квантовых светодиодов команда физиков обнаружила, что они «запоминают» свои прошлые состояния. «Память» о возбуждении прибора помогла светодиодам быстрее реагировать на приложенное напряжение.
Светодиоды (LED) — это устройства, которые излучают свет в ответ на приложенное электрическое напряжение. Из разных по составу и свойствам диодов изготавливают дисплеи, датчики, осветительные приборы и системы связи.
Один из типов этих устройств — квантовые светодиоды (QLED). В качестве светоизлучающего компонента вместо традиционных полупроводников в них работают квантовые точки, полупроводниковые частицы нанометрового размера. По сравнению с обычными светодиодами QLED показывают лучшую энергоэффективность и цветопередачу.
Несмотря на их потенциал, большинство разработанных на сегодняшний день QLED медленно реагируют на изменение напряжения. Ученые нашли способ обойти эту проблему.
Международная команда исследователей выяснила, что в квантовых светодиодах есть эффект «памяти возбуждения». Ученые нашли, как использовать ее для быстрого переключения состояния светодиодов. Свой подход они описали в статье в журнале Nature Electronics.
Исследователи нашли у квантовых светодиодов «память», когда детально изучали их реакции на импульсные электрические воздействия. Они измеряли переходную электролюминесценцию — параметр, позволяющий отслеживать, как быстро светодиод включается или выключается в ответ на импульсное напряжение. С помощью осциллографа они наблюдали, как интенсивность излучения изменяется со временем в ответ на электрические импульсы длительностью в микросекунды.
Тесты, проведенные исследователями, показали, что электролюминесцентные реакции QLED зависят от остаточных эффектов электрических импульсов, которые были приложены к ним ранее. Такой эффект «памяти возбуждения» обеспечивают глубокие ловушки для дырок в аморфных полимерных полупроводниках.
«Наше самое важное открытие заключается в том, что QLED „помнят” предыдущие импульсные воздействия даже спустя миллисекунды после выключения. В результате при работе на более высоких частотах импульсов устройства начинают реагировать быстрее. Этот эффект позволяет QLED работать на высоких частотах, превышающих 100 МГц, и делает их сильными кандидатами для высокоскоростных приложений в оптической связи», — говорят доктор Юньчжоу Дэн (Yunzhou Deng) и профессор Ичжэн Цзинь (Yizheng Jin), авторы статьи.
Чтобы продемонстрировать практическую применимость подхода, авторы разработали микро-QLED, способный передавать данные со скоростью до 120 Мбит/с, сохраняя при этом высокую энергоэффективность.
Результаты исследования развивают технологии квантовых светодиодов, открывая им путь из приборов для изготовления дисплеев в сферу передачи данных. Однако чтобы ускорить отклик устройств на QLED, ученым нужно разработать новые материалы на основе квантовых точек. Они планируют изучать эксперименты с составами и конфигурациями ядер и оболочек наноструктур.
Космонавтика
Японский лунный аппарат SLIM неожиданно вышел на связь из перевернутого положения 29.01.2024
Медицина
Алкоголь на ночь изменил структуру сна 29.01.2024
Биология
Ученые впервые увидели попытку шмелей вылечить свои раны 29.01.2024