Evgenia Vavilova
|3
Объединить конфликтующие свойства помогли квазичастицы со специфическим зарядом. Если удастся подтвердить предложенную теорию экспериментом, то перед нами — новый тип квантовых материалов.
Сверхпроводимость и магнетизм — свойства вещества, возникающие из-за особенностей поведения электронов в материале. Объект будет магнитом, если у него есть собственное магнитное поле, образующееся из-за примерно одинаковых спинов электронов в веществе. Сверхпроводник определяют как вещество, в котором электроны могут двигаться без трения, например, объединяясь в куперовские пары.
Долгие годы ученые считали, что магнетизм и сверхпроводимость не могут сосуществовать в одном материале: магнитное поле может разрывать связи между куперовскими парами, есть эффект Мейснера — при переходе в сверхпроводящее состояние проводник полностью вытесняет из себя магнитное поле или «пускает» его внутрь в особом виде — как вихри Абрикосова.
Но в начале 2025 года две исследовательские группы опубликовали статьи о материалах, в которых одновременно регистрируются и сверхпроводимость, и магнетизм. Первым оказался ромбоэдрический графен (состоящий из четырех или пяти слоев графена), вторым — дителлурид молибдена (MoTe₂). В обоих случаях использованные образцы настолько тонкие, что ученые считают их двумерными.
Исследователи предположили, что совместить сверхпроводимость и магнетизм могут квазичастицы — энионы. Их существование предсказали в 1980-х, а во время разработки теоретического описания поведения энионов ученые выдвинули теорию, что в присутствии магнетизма квазичастицы должны иметь возможность проявлять сверхпроводимость.
Теперь, когда ученые такие материалы нашли, потребовалось описание происходящих в этих материалах процессов. Команда физиков из Массачусетского технологического института в США смогла его предложить. Статья об этом опубликована в журнале Proceedings of the National Academy of Sciences.
Ученые уже знали, что для дителлурида молибдена интересующее их состояние вещества сопровождалось дробным квантовым эффектом Холла, при котором электроны в материале дробились на энионы.
«Когда в системе есть энионы, происходит следующее: каждый энион может пытаться двигаться, но его движение „фрустрировано“ присутствием других энионов. Эта „фрустрация“ возникает, даже если энионы находятся чрезвычайно далеко друг от друга. И это чисто квантовомеханический эффект», — рассказал первый автор статьи Сентил Тодадри (Senthil Todadri).
Физикам пришлось искать условия, при которых энионы могли бы вырваться из этого состояния «фрустрации» и двигаться как единый макроскопический поток.
Исследователи смоделировали условия возникновения этого эффекта в MoTe₂ и проследили за преобразованиями электронов. Если энионы в основном несли заряд в ⅓ заряда электрона, то система оказывалась «фрустрирована» и показывала металлическую проводимость. А если большинство энионов обладали ⅔ заряда электрона, материал должен проявлять сверхпроводящие свойства. Ученые сообщили, что это совершенно другой механизм образования сверхпроводника — относительно куперовских пар.
В статье физики рассказали, что сверхпроводящие энионы возникают при определенной электронной плотности, а при их первом появлении в случайных местах материала спонтанно возникают вихри сверхпроводящего тока с новыми для учеными паттернами. Такое поведение отличается от обычных сверхпроводников, и именно его экспериментаторы смогут искать для подтверждения опубликованных расчетов.
«Если наше объяснение через энионы верно для MoTe₂, это открывает дверь для изучения нового вида квантовой материи, которую можно назвать энионной квантовой материей. Это станет новой главой в квантовой физике. Но потребуется еще множество экспериментов, прежде чем можно будет говорить о подтверждении нашей теории», — подытожил Тодадри.
Космонавтика
Японский лунный аппарат SLIM неожиданно вышел на связь из перевернутого положения 29.01.2024
Медицина
Алкоголь на ночь изменил структуру сна 29.01.2024
Биология
Ученые впервые увидели попытку шмелей вылечить свои раны 29.01.2024