Evgenia Vavilova
|31
Ученые из Национального университета Сингапура разработали дизайн молекул, увеличивающий излучающую способность органометаллических сцинтилляторов более чем в тысячу раз. Это стало возможным благодаря перепоглощению экстинов внутри материала.
Распознать и зафиксировать действие ионизирующего излучения, например рентгеновского, — важная задача в медицине, экологическом мониторинге и астрономии. Сделать это помогают люминесцентные материалы, преобразующие излучение в свечение в видимом спектре длин волн.
Подвид люминесцентных веществ, преобразующих высокоэнергетические излучения в свет, называется сцинтилляторами. Современные высокоэффективные сцинтилляторы в основном созданы из керамики и перовскитов. Эти материалы сложно и дорого производить, они токсичны, хрупки и нестабильны в работе. Ученые постоянно ищут новые, менее капризные сцинтилляторы.
Фосфорорганические соединения — альтернатива существующим сцинтилляторам: эти материалы экономичны в производстве и обладают гибкостью. Они не очень эффективны в обнаружении рентгеновского излучения, потому что слабо его поглощают.
Еще один плюс таких соединений — возможность генерации в них триплетных экситонов. Это квазичастицы, связанное состояние электрона и дырки. В триплете спины электрона и дырки параллельны, общий спин квазичастицы — единица. Такие частицы образуются в материале, когда он поглощает излучение. Они есть в материале, но не могут использоваться полностью из-за его электронной структуры.
Команда под руководством профессора Лю Сяогана (Liu Xiaogang) решила эти проблемы, введя в сцинтилляторы редкоземельные вещества-лантаниды для улучшения поглощения рентгеновского излучения. Также в сцинтиллятор ввели органические лиганды — дополнительные вещества, выстраивающиеся в основную структуру материала. Они помогли собрать триплетные экситоны и преобразовать их энергию в видимое излучение.
Дизайн молекул, разработанный исследователями, улучшил характеристики молекулярных сцинтилляторов. Захват энергии на органических лигандах позволил увеличить люминесценцию материала в 1300 раз. Результаты научной работы опубликованы в журнале Nature Photonics.
Созданные учеными органолантанидные соединения проявляют высокую устойчивость к высокоэнергетическому излучению и превосходят известные органические сцинтилляторы и неорганические кристаллы по эффективности преобразования рентгеновского излучения. Физики смогли добиться полного спектра рентгеновской сцинтилляции — материал излучает от ультрафиолетового до ближнего инфракрасного диапазона. Кроме того, их методология позволяет точно регулировать время жизни созданного излучения.
Космонавтика
Японский лунный аппарат SLIM неожиданно вышел на связь из перевернутого положения 29.01.2024
Медицина
Алкоголь на ночь изменил структуру сна 29.01.2024
Биология
Ученые впервые увидели попытку шмелей вылечить свои раны 29.01.2024