Evgenia Vavilova
|7
Для разрыва связи между молекулами водорода понадобились золото, титан и ультрафиолетовое излучение. Полученный водород ученые использовали для преобразования углекислого газа в этилен.
Реакция присоединения водорода к органическим веществам, гидрирование — одна из важнейших в химической промышленности. С ее помощью из нефти производят топливо, пластмассы, моющие средства, спирты, загустители и стабилизаторы для пищевых применений.
Для реакции гидрирования нужно разделить молекулярный водород, H₂, на атомы водорода. Этот этап — реакция диссоциации. Она протекает двумя путями: гомолитической и гетеролитической диссоциации. Для обеих реакций используют катализаторы — вещества, ускоряющие протекание реакций. Часто катализаторы — редкие и дорогие вещества: золото, медь, платина, палладий.
Гетеролитическую реакцию проводят при температурах в сотни градусов Цельсия и высоких давлениях, в ее результате получают отрицательно и положительно заряженные ионы водорода. Гомолитическая диссоциация водорода создает два нейтральных атома водорода. Для промышленных применений выгоднее первая — она создает «активный» водород, легче взаимодействующий с другими веществами. Но из-за высоких температур протекания она энергозатратна и опасна.
Исследователи разработали новую стратегию гетеролитической диссоциации H₂. Они использовали в качестве катализатора диоксид титана, содержащий наночастицы золота (Au/TiO₂), и добавили в процесс облучение ближним ультрафиолетом на длине волны 365 нанометров. Это позволило разделить водород при комнатной температуре. Исследование опубликовано в журнале Science.
В статье химики подробно рассказывают о механизме фотохимической диссоциации водорода. Под ультрафиолетовым излучением электроны мигрируют из TiO₂ в наночастицы золота (Au), а дырки захватываются дефектами на границе раздела сред, образованными структурами Au–O–Ti. Электроны оказываются близки в пространстве и к золоту, и к дыркам. Формируются электрон-дырочные пары, а уже они стимулируют разрыв связей между атомами водорода.
Ученые выяснили, что активность диссоциации H₂ практически линейно зависела от интенсивности ультрафиолетового излучения. Это подтверждает, что именно освещение является катализатором протекания реакции при комнатной температуре.
Созданный процесс позволил ученым восстановить инертный диоксид углерода (CO₂) до этана при комнатной температуре. Более того, последующее фотокаталитическое дегидрирование этана привело к образованию этилена. Полезный выход реакции — более 99% за 1500 часов УФ-облучения. Их метод работал под солнечными лучами — в спектре излучения Солнца есть нужная длина волны ультрафиолета.
Эти результаты позволяют ученым надеяться, что их метод подойдет не только для научных целей, но и для промышленности. Они видят возможности трансформации найденной ими стратегии в масштабируемую технологию, использующую солнечный свет или фототермическое излучение, для модернизации химических производств.
Космонавтика
Японский лунный аппарат SLIM неожиданно вышел на связь из перевернутого положения 29.01.2024
Медицина
Алкоголь на ночь изменил структуру сна 29.01.2024
Биология
Ученые впервые увидели попытку шмелей вылечить свои раны 29.01.2024